REPORT DC
e AEPCAT Stuv BTy __a55.8 JaTION AD—A229 032
Unclassified m— N/A lll“. I |l,l ‘:“E '
31 DSTRIBUTION.AvALAB L TY TF AEPCRT” B

20 SELLA TV CLASSIEICATION & ELECTE Approved for Public Release

N/A . . A
et ASSIFICATION DOWNGHR Distribution Unlimited
el '

N/A

4 PEAREQAMING ORGAVIZATION

5 MONITORING ORGANIZATION REPCRY NuUMBER'S,

AFOSRTR- 00 1100

- I
6a VAME OF PEAEQRMING OAGANIZATION rb. OFFICE SYROT Te. NAME OF MONITORING ORGANIZATION

Utah State University 77 S AFOSR/NL
6c. ADORESS (cuy State and Z1P Code: To. AOORESS Cuty. Scare anag ZIP
Logan, U 84322-8200 Bolling AFB, OC 20332-6&&8
By 41O
Bs. NAME OF FUNDING/SPONSORING 8p. OFFICE SYMBOL 9. PRAOCUAEMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION tlf applicadw i
A’FO\S R L Grant AFOSR - 89-~0509
8c. AODRESS (City. State and ZIP Code: 10. SOURCE OF FUNDING NOS
‘ByA “H10 PROGAAM smosECT | Task | woRre .~.-
ELEMENT NO NO . ~O ' ~Ne

Bol)irg AED, D 30335 : |
! aG ‘

rn—rn’LE Inciude Security Classificet: ‘
Envirom "Rta{ ﬂé"gntgi;\;n:‘g:'s[’rggerty Estimation LQ( ( Dg_ PJ 2312 i

‘SZ.FEISONALAUTNORQS) Doucette, W.J.; Stevens, D.K.; Dupont, R.R.; McLean, J.E.; Denne, D.;

Holt, M.
T3a VYPE OF REPORT 136, T'ME COVERED 18 OATE OF MEPORT (¥r MWo. Day/ 'S PAGE COUNT
Annual FAOM ro 1990/9/14

16. SUPPLEMENTARY NOTATION

17 COSAT! CODES 18 SUBJECT TERMS (Continus on reverss if necessary end ideniify by biock number:
FIELD GROUP SUB. GR Pollution, QSARs, Expert System, Organic Chemical,

Property Estimation
T

. ASSTRACT /Continue or reverse if necesery end identify by blocs number) B
A microcomputer based Property Estimation Program (PEP) and Database (DB), utilizing

molecular connectivity indices (MCI)-property and property-property correlations, as well
as UNIFAC derived activity coefficients, has been designed to provide both experts and non-
experts wich a fast, economical method to estimate compound aqueous solubility, octanol/
water par-ltion coefficient, vapor pressure, organic carbon normalized soil sorption
coefficient, BCF, and Henry's Law constant for use in environmental fate modeling. The
user can input the required structural information using either Simplified Molecular Input
Line Entry System (SMILES) notation or connection tables generated from two commercially
available two~dimensional drawing programs, ChemDraw or Chemlntosh . Estimates of

predictor accuracy are provided along with the estimate operty values. The development
and current status of the PEP-DB program is described. )
20. CISTRIBUTION/AVAILASILITY OF AQSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEO/UNLIMITED L SAME AS RST _ OTIC USERS L O(\( Q Casam
22a. NAME OF AESPONSIBLE (INOIVIOUAL 220 TELEPHONE NUMEBER 22¢ QFFICE SYMBOL
_— iinciude 4rwa Code:
7. Jant Gervend, Lt (of [ USAF 0a) 747 S0/ )
DD FORM 1473,83 APR Y ECITION OF 1 JAN 73 1S OBSOLETE

SECURITY CLASSIFICATION OF T='S Pae

19 27 SEP 1999




ENVIRONMENTAL CONTAINMENT PROPERTY ESTIMATION USING QSARs IN
AN EXPERT SYSTEM

William J. Doucette

David K. Stevens

R. Ryan Dupont

Joan E. McLean

Doug Denne

Mark Holt

Utah State University

Utah Water Research Laboratory
Logan, UT 84322-8200

September 14, 1990

Annual Report for Period 15 August 1989 - 15 August 1990

Prepared for
U.S. AIR FORCE OF SCIENTIFIC RESEARCH
Bolling AFB, OC 20332-6448

()H




TABLE OF CONTENTS

Page

Executive Summary . I
Objectives or Statement of Work wiD 3
Background and Significance . 4
Nature of the Problem . .4
Quantitative Quantitative Structure acnvny relanonshlps (QSARs) 4
Correlations between the property of interest and another more easily obtdmed pxoperty 5
Fragment constant methods . . . . G e S
Correlations Between the Property of Interest and Topologrcal Tndexes 7
Theoretically Derived Equations . .. 8
Problems associated with the estimation methods (or the need for a decision xuport) .8
Status of Research Effort 9
Introduction . . . e e e Y
Overview of PEP and chemical property database . . . . . . . . ... .. .9
Computer Hardward/software requirements and developmenttools . . . . . . . . . 10
PEP software overview . . . . . . . . . . . . . . . . . . ... ... 10
PEP software components 10
HyperTalk Scripts . . e
Hypercard external commands and functions . . . . . . . . . . . . .. .. 1
External applications Il
PEP software tools O e
Hypercard . . . . . . . . . . . .. oo o002
Think C . . . . . . . ..o o2
ResEdit . . . O K
Progress SCMD O
System Requirements . . . . . . . . . . . . ... ... . ... ... 13
Chemical Property Database . . . . . . . . . . . . . . . ... ... ... 13
Description . . . . . . . . . . . . . .. .. ..o o013
MCI Based Property EstimationModule . . . . . . . . . . . . . . . . . . . 15
Overview . . P
Calcualtion of MCIS . . « + + o o o o e s
Development of MCI-Property Relationships . . . . . . . . . . . . . . . .. 18
Statistical Evaluation of MCI-Property Relationships . . . . . . . . . . . . . . 19
Examinationofresidvals . . . . . . . . . . . ... . ... ...
Analysisofvariance . . . . . . . . . . . . . .. oo oo 00000021

ii




TABLE OF CONTENTS (CONT"D)

Student's t-test for the significance of variables
Precision of the predicted value . .
Preliminary Results from MCI- Property Relanonshlps

UNIFAC Module

Overview
Calculation of UNIFAC derived activity coefficients

Estimation of aqueous solubility and octanol/water partition coefficients for

UNIFAC derived activity coefficients .
Property/property correlation module

Summary of First Year Accomplishments .
Second Year Objectives .
Miscellaneous Publications

List of Papers Presented at Professional Meetings .

List of Graduate Students Associated with the Research Effort .

References .
Appendix A
Appendix B
Appendix C

iii

DTIC TaAB D
Unannounced a
Justification ____
By

| bistribution/

Accession Por P

NTIS GRA&I ®

Avallability Codes

Avall andjor
Dist Speolal

p }




LIST OF TABLES

Table

1
2

Current nuniber of components in chemical property database listed by property

Sample Anova table .

LIST OF FIGURES

Figure

1
2
3

9

Flow chart overview of PEP.DB .

View of PEP's chemical property database

Flow chart depicting operation of MCI modeule .
Delta values calculated for phenol

Four types of graph fragments .

Examples of residual plots

Experimental versus estimated (MCI Universal) log K_,

Experimental versus estimated (MCI four general equations) log K_ .

Experimental versus estimated (ClogP) log K, .

10. Flow chart depicting operation of UNIFAC module

11 Flow chart depicting operation of UNIFAC module

iv




EXECUTIVE SUMMARY

In order to assess the potential impact of the accidental introduction of an organic chemical
into the environment, information is needed concerning its environmental fate. The fate of an
organic chemical in the environment depends on a variety of physical, chemical and biological
processes. Mathematical models, which attempt to integrate these processes, are widely used
to predict the transport and distribution of organic contaminants in the environment. Use of
these models requires a variety of input parameters which describe site and contaminant
physical-chemical and biological characteristics. Several important contaminant properties used
to assess the mobility and persistence of a chemical are aqueous solubility, octanol/water
partition coefficient, soil/water sorption coefficient, Henry's Law constant, bioconcentration
factor, and transformation rates for biodegradation, photolysis and hydrolysis.

One major limitation to the use of environmental fate models has been the Lick of suitable
values for many of these properties. The scarcity of data, due mainly to the difficulty and cost
involved in experimental determination of such properties, has resulted in an increased reliance
on the use of estimated values for many applications.

Quantitative Structure-Property Relationships (QSPRs) and Quantitative Property-Property
Relationships (QPPRs) are methods by which properties of a chemical can be estimated from a
knowledge of the structure of a molecule or from another more easily obtained property.
Selection and application of the most appropriate QSPRs or QPPRs for a given compound is
based on several factors including: the availability of required input, the methodology for
calculating the necessary topological information, the appropriateness of a correlation to the
chemical of interest, and an understanding of the mechanisms controlling the property being
estimated.

A microcomputer based Property Estimation Program and Database (PEP-DB), utilizing
molecular connectivity indices (MCI)-property and property-property correlations and

UNIFAC derived activity coefficients, is being developed to provide both experts and non-




experts with a fast, economical method to estimate a compound's aqueous solubility,
octanol/water partition coefficient, vapor pressure, organic carbon normalized soil sorption
coefficient (K,.), bioconcentration factor (BCF), and Henry's Law constant for use in
environmental fate modeling. The user can input the required structural information using
either Simplified Molecular Input Line Entry System (SMILES) notation or connection tables
generated from two commercially available two~dimensional drawing programs, ChemDraw™
or ChemlIntosh™. Estimates of predictor accuracy are provided along with the estimated

property values. This report describes the development and current status of PEP-DB.




OBJECTIVES OR STATEMENT OF WORK-WJD

The primary goal of this project is to develop a microcomputer-based expert system

utilizing Quantitative Structure Activity Relationships (QSARs) to predict the physical-chemical

properties of an organic chemical which are necessary to model its environmental fate. The

specific properties that are being investigated include: aqueous solubility (S), vapor pressure

(Vp), organic carbon normalized soil/water partition coefficient (Koc), Henry's Law constant

(H), and bioconcentration factor (BCF).

In order to achieve the primary goal of this research, the following specific objectives are

being accomplished:

1.

To compile an accurate database of experimentally determined values of aqueous solubility,
vapor pressure, soil/water partition coefficient, Henry's Law constant, and
bioconcentration and bioaccumulation factors for a wide variety of organic compounds.
The database includes compounds exhibiting a broad range of physical and chemical
properties and expected mobility and persistence.

Using the database developed in Objective 1, evaluate and refine existing methods and/or
develop new methods for estimating these contaminant properties using QSARs.

Develop a microcomputer-based decision support system which incorporates the methods
developed in Objective 2, to allow the prediction of environmental fate and transport
properties of an organic contaminant upon inputting its structure. An estimate of the
accuracy of the predicted value is also provided from the decision support system.

Test the ability of the decision support system developed in Objective 3 to provide an
accurate estimate of these environmental fate and transport properties. This will be done
using a test set of chemicals of interest to the USAF (solvents, fuels, pesticides) for which

accurate experimental values are available.




BACKGROUND AND SIGNIFICANCE

Nature of the problem

In order to assess the potential impact that the introduction of an organic chemical into the
environment will have, information is needed concerning its environmental fate.
Environmental fate encompasses the transport and degradation processes which determine the
behavior of a chemical released into the environment. The fate of an organic chemical
introduced into the environment depends on a variety of physical, chemical and biological
processes. Mathematical models, which attempt to integrate these processes, are widely used
to predict the environmental transport and distribution of organic contaminants. Use of these
models requires a variety of input parameters concerning site and contaminant physical-
chemical and biological characteristics. Several important contaminant properties used to assess

the mobility and persistence of a chemical are listed below:

Mobility Persistence

Henry's Law constant Biodegradation Rate
(or vapor pressure and aqueous solubility) Photolysis Rate
Bioconcentration factor Hydrolysis Rate
Soil/water partition coefficients Oxidation Rate

One major limitation to the use of such models has been the lack of suitable values for
many of the properties listed above. The scarcity of data, due mainly to the difficulty and cost
involved in experimental determination of such properties, has resulted in an increased reliance
on the use of estimated values for many applications.

uantitative Structure-activity relationships (QSARs

Quantitative Structure-Activity Relationships (QSARs) are sources of such data that are
increasingly recognized as rapid, practical, and inexpensive methods with which to estimate
values of some constants or properties necessary for fate assessment models. QSARs are

methods by which data or information on the properties of a chemical can be inferred or
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calculated from a knowledge of the structure of a molecule or from another more casily
obtained property without a specific concern for molecular structure.
Most QSAR methods currently used to estimate contaminant properties tall into one the
following categories (Lyman, 1985):
1. Correlations between the property of interest and another more easily obtained property.
2. Correlations between the property of interest and various topological indexes.
3. Calculation of the property of interest using fragment or group contribution methods.
4. Theoretical equations, generally containing parameters that are experimentally or
empirically derived.

Correlations between the property of interest and another more easily obtained property:

One of the most useful and widely used type of estimation method is a simple lincar
regression between two properties. Frequently this regression is expressed in terms of the log
of the two properties. Researchers have found that a number of enviroamental properties can
be related to one another in this manner. For example, octanol/water partition coelficient (Kow )
has been used to estimate soil sorption coefficients (Karickhoff, 1979) aqucous solubility
(Chiou et al, 1977 and Mackay et al., 1980), bioconcentration factors (Neely et al.. 1987,
Chiou et al., 1977), and aquatic toxicity (Koneman, 1980).

One important limitation in using this approach is that in many cases, values for the
pr -perty used to estimate the property of interest are also not available. In addition, when
using this approach it is essential to evaluate the data used to gencrate the correlation
expression. In many instances the reliability correlation expression was derived using only one
chemical class, a narrow range of property values, poor quality data, or estimated property
values in the regression analysis. It is also important not to use a regression equation outside
of the range of data from which it was derived.

Fragment constant methods
These methods generally assume that a single numerical value, referred to as a fragment

constant, will represent the contribution of a specified atom, fragment (a group of atoms




bonded together), or structural factor to the property of interest. Probably the most widely
used fragment constant method has been developed by Hansch and L.co (1979) for estimating
octanol-water partition coefficients (K,,,). Usii.g a large database of measured values of K.
fragment constants have been developed for over 160 atoms or fragments and for a variety of
structural factors (double and triple bond, ring aromatic rings, etc.). These fragment constants
and structural factors are used to estimate a value of log Kow for a particular chemical using the

following expression.

Z log KOW = 2 (fragment values) + Z (factor values) 0

Another example of the fragment constant approach to predicting properties 1s the
UNAFAC (UNIQUAC Functional Group Activity Coefficient) solution of groups method of
calculating activity coefficients. The UNIFAC method was developed to estimate activity
coefficients in mixtures of nonelectrolytes (Fredenslund et al., 1977). In this technique. the
activity coefficient is divided into two parts, a combinatorial part which reflects the size and
shape of the molecule present and a residual portion which depends on functional group
interactions. Various parameters, such as van der Waals group volumes and surface areas and
group interaction parameters, are input into a series of equations from which the combinatorial
and residual parts are calculated. Values for the group parameters have been tabulated and can
be found in the literature (Frendenslund et al., 1977 and Gmehling, 1982). Lyman ct al.
(1982) give several examples illustrating the use of this technique.

The UNIFAC method was used by Arbunkle (1983) to calculate the activity coefficients for
21 organic compounds. Solubility values were than calculated from the UNIFAC derived
activity coefficients and compared to experimental values. The calculated solubility values
were generally lower than the experimental values and the largest errors were gencr'ly
associated with the least soluble compounds.

Lyman (1985) summarized the limitations associated with the use of fragment constant

methods as: most fragment constants are derived from compounds with no more that one
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functional group, most are limited in the number of fragments and fuctors they cover, meaning
that for certain types of compounds “'ie fragments and fuctors are unavailable: tive application to
structurally complex molecules can be difficult; many make no distinction between positonal
isomers of a compe.nd; and they may be difficult to use.

Correlaiions Between the Property of Interest and Topological Indexes

Topological indexes attempt to translate molecular structures into unique characteristic

structural descriptors that can be expressed numerically. One of the most widely used
topological index is tte molecular connectivity index (MCI) developed by Randic (1972), and
refined and expanded by Kier and Hall (1976, 1980, 1986). Molecular connectivity is a
method of bond counting from which topological indexes, based on the structure of the
compound, can be derived. For a given molecular structure, several types and orders of
molecular connectivity indexes (MClIs) can be calculated. Informauton on the molecular size,
branching, cyclization, unsaturation, and heteroatom content of a molecule is encoded in these
various indices (Kier and Hall, 1976). Mclecular connectivity has been utilized to predict Ko
(Sabljic, 1984; Sabljic, 1987b), S (Kenaga and Goring, 1980), and other physicochemical
properties of chemical compounds such as K, (Doucette and Andren, 1988) and
bioconcentration factors (Briggs, 1981). The advantage of using MCls to predict physical-
chemical properties is that once the correlation has been developed only the structure of the
cheruical of interest is required as input. No additional experimental parameters are needed.
Although researches have been successful in using MClIs to estimate properties for a variety
of chemuicals, the problem of class specific correlations <till reninins. For example, Gerstl and
Helling (1987) evaluated the use of MCls in estimating log K, log K, and water solubility
for many types of pesticides and non-pesticides. It was found that, while good predictions of
sorption coefficients were possible for a specific groups of compounds, the ability of any one
equation to predict log K, ., based upon one or two MCls, was rather low for diverse
compound types. In addition, calculation of MClIs can be difficult, especially the higher-order

indices for complex molecules.




Theoretically Derived Equations

Two examples of using theoretical equations to estimate properties of environmental
interest include the estimation of a compound's vapor pressure from its boiling point and the
calculation of Henry's Law constant from the ratio of a compound's vapor pressure to its
aqueous solubility.

Using a 72 compound test set of hydrocarbons and halocarbons, Mackay et al. {1982)
developed an expression which enables the estimation of a compound's vapor pressure from its
boiling point. This equation was derived, in part, from the Clausius-Clapeyron equation, itself
derived from the second law of thermodynamics. Mackay et al. noted that this expression may
not be applicable to other classes of compounds and that method errors increase as vapor
pressure decreases.

Another widely used example of a theoretically derived method is the calculation of
Herny's Law constants, H, from a compound's vapor pressure/zaqueous solubility ratio. H is
defined as the ratio of a chemicals concentration in air to its concentration in water when those
two phases are in contact and at equilibrium. The derivation of this expression requires the
assumption that liquid phase activity coefficients are constant up to the aqueous solubility limit.
Thus, the method is not applicable to compounds with high water solubilities.

Problems Associated with the Estimation Methods (or the need for a decision suppe

In most cases, more than one estimation method is available for a particular input
parameter. Estimation methods however, have widely varying accuracies and indiscriminate
use of these techniques can result in large errors.

Selection and application of QSARs methods requires varying degrees of expertise that
depend on the structure of a particular chemical of interest, knowledge of the mechanism of the
process, the extent of the database used to develop the QSAR, and the complexity of the
structural analysis required to relate structure to the property. For example, some QSARs are
broader than others in the range of chemicals that are covered, and some methods have been

established with a better understanding of the mechanisms or propertics involved. In many




cases estimation methods are developed from empirical or semiempirical correlations. The
success of the correlation is depeadent on many factors including the type and number of
compounds used in its development.

Incorporation of QSARs into a computer format is a logical and necessary step 1o gain full
advantage of the methodologies for simplifying fate assessment. A practical computerized
property estimation program, utilizing QSARs, should include the following atiributes: be
simple and flexible to use for both experts and non-experts, include sufficient statistical
information regarding the development of the QASARSs so that the range of applicability of
such models can be evaluated, and provide an indication of the accuracy of the estimated
property. A microcomputer-based system for the estimation of parameters necessary for fate
assessment models would be of great benefit to USAF agencies responsible for environmental
fate assessment.

STATUS OF RESEARCH EFFORT
Introduction

After evaluating a variety of software approaches, including several expert systems shells,
we decided to build the property estimation system using Apple HyperCard™ software. This
approach will enable us to efficiently build a flexible, simple-to-use interfuce between the
various modules or subroutines of our property estimation system. This approach will also
permit additional property estimation routines, as they are developed, to be easily added.

The following sections will describe the development and use of the HyperCard™-based
Property Estimation Program, PEP, and its associated chemical property Database (DB).

verview of PEP and Chemical Property Databas

PEP is currently comprised of three property estimation modules linked to a chemical
property database. The three property estimation modules utilize MCI-property relationships,
UNIFAC-derived activity coeflicients, and property-property correlations tor compound

property estimates. The modular organization of PEP is illustrated in Figure 1.
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Figure 1. Flow chart overview of PEP.DB

COMPUTER HARDWARE/SOFTWARE REQUIREMENTS AND DEVELOPMENT TOOLS

PEP Software Qverview

The PEP software system is a HyperCard™ based program that runs on Apple Macintosh
computers. HyperCard is an information/management program included with the purchase of
Macintosh computers. HyperCard offers graphics, information storage, the means to display
information in a variety of formats, the ability to establish links between related information, a
high level language (HyperTalk), the ability to extend HyperTalk by writing new commands in
a compiled language, and a mechanism to transfer control to other Macintosh applications. The
PEP system uses all these features.

PEP Software Components

PEP uses a variety of programs to control the user interface, manage the HyperCard

Stacks, and make various computations. These tools are: HyperTalk Scripts, HyperTalk

External Commands (XCMDs), HyperTalk External Functions (XFCNs) and external

application programs.
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HyperTalk Scripts

HyperCard™ contains a high level, interpreted language called HyperTalk. PEP makes
extensive use of HyperTalk. A HyperTalk program is called a script. PEP uses scripts to
control the user interface, the stack to stack linkage, and the linkages between the cards in each
stack. This is the standard way in which HyperTalk is normally used. Like most
HyperCard™ applications, PEP uses scripts at all levels in the HyperCard™ hierarchy. Scripts
are used at the button, field, card, background, and stack levels in each of the PEP stacks.

Besides controlling each stack, scripts also do some of the computations in the system.
For example, a script is used to compute estimates of the chemical/physical properties in the
PEP processors as a function of the MCls.

HyperCard External Commands and Functions

PEP contains several external commands and functions. A HyperCard™ external
command is an extension to the HyperTalk language. HyperCard™ externals in PEP are
written in the language C. External commands and functions are used for several reasons: to
do functions not supported by HyperTalk, to improve the speed of some computations, and to
improve the structure of a software module.

External Applications

External applications are external computer programs that can be run independent of
HyperCard™. HyperCard™ provides a means (the open command) to transfer control to
another application. When the application ends, control returns to HyperCard™. PEP uses
three applications:

1. ChemDraw™, by Cambridge Scientific Computing, Cambridge, Mass.
2. Chemintosh™, by SoftShell International Ltd, Grand Junction, CO
3. EstimateMCI, by Utah Water Research Laboratory, Logan, Utah

ChemDraw™ and Chemintosh™ are commercial applications. They are used by the PEP

processor stack to provide a means for the user to create a connection table for subsequent

input to PEP. These programs are not distributed with PEP. EstimateMCI is an application
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designed and coded by the PEP development team. This is a C program. [t is distributed with
PEP. Estimate MCI accepts a SMILES string or the contents of a connection table file for ity
input. It then computes the MCls as a function of the SMILES string or the connection table.
It communicates with the PEP processor stack by passing and receiving information through
external files. (See the prologue in the source code file MCIL.C for a detailed description of this
interface.)

PEP Software Tools

The PEP software uses a five software tools. These are:
1. HyperCard, version 1.2.5, by Apple Computer, Inc.
2. Think C, version 4.0, by Symantec Corporation, Cupertino, California
3. XTRA, the XFCN, XCMD toolkit, by Adrian Freed, Fidcor USA, Louisville, Colorado
4. ResEdit, version 1.2, by Apple Computer, Inc.
5. Progress XCMD, by Jay Hodgdon, 587 Cutwater Lane, Foster City, Ca. 94404
HyperCard™

This is the foundation of the system. All modules in the PEP svstem are based on
HyperCard™.
Think C

All external commands and functions (XCMDs, and XFCNS) are written in the language
C, and compiled with version 4.0 of Symantec Corporation's Think C compiler. They are
compiled as Macintosh code resources. The application, estimate MCI, was also written in C
and compiled with the Think C compiler. This was compiled as a Macintosh application.
XTRA

XTRA is a commercial product that eases the burden of writing HyperTalk external
commands and functions. This product provides an interface between HyperCard™ and code
resources (external commands or functions) compiled with the Think C compiler. In
Macintosh terminology, this interface is called glue. The XTRA program also contains a

library of useful functions for use by HyperCard™ external commands.
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ResEdi

ResEdit is a Macintosh resource editor by Apple Computer, Inc. ResEdit is used to attach
each HyperCard™ external command and function to the appropriate HyperCard stack.
Progress XCMD

The progress XCMD is a shareware product. This XCMD displays a dialog box with a
moving cursor to show how far along (e.g. % complete) time consuming scripts while
computations are done.
System Requirements

The PEP system requires the following system configuration to run: a Macintosh Plus,
Macintosh SE, or Macintosh II computer, with a hard disk; HyperCard software; Macintosh
system software version 5.0 or greater, running under MultiFinder; and a minimum of 2

megabytes of memory (RAM), with 1000 kBytes of memory allocated for HyperCard.

CHEMICAL PROPERTY DATABASE

Description

Experimentally determined chemical property data was complied from a variety of literature
sources and computerized databases. Using this information, a chemical property database
was developed using HyperCard™. This database was used for developing MCl-property and
property-property relationships and is a major component of the overall property estimation
software system being developed. In its current state, the database includes the following
information: compound name and synonyms, CAS number, chemical formula, molecular
weight, boiling point, melting point, aqueous solubility, octanol/water partition coefficient,
vapor pressure, soil/water sorption coefficients, Henry’s Law constants, bioconcentration
factors and appropriate references for each value. The number of compounds currently in the

database for each property is summarized in Table 1.
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TABLE 1. Current number of compounds in chemical property database listed by property

Property name # compounds
Aqueous solubility 365
Octanol/water partition coefficient 196
Soil sorption coefficient (organic carbon normalized) 171
Vapor Pressure 95
Henry's Law constants 76
Bioconcentration Factors 70

The Chemical Property Database also provides the means for the user to search for
chemical compounds, to sort the compounds by name, boiling point, melting point, or
molecular weight, and the ability to transfer to any of the PEP modules. The chemical property

database screen is illustrated in Figure 2.

2.2.4.5.5 ~-pentachlarohiphenyl

Synonyms
O
8888 ‘ l
o] ©),
CAS Number:
Formula: C12HECIS C 1
MP: \770 oc @

BP: °c @ Mv:3264 |
SMILES String: Ci-c(ccciClec1-c(ec(Ce2Ce(Cl)c2

Physical/Chemiocal Properties Values Temp °C Units Ref
[?] Log Aqueous Solubility (S) -1.51 25 [moles\Liter | &
E] Log Octanol/Water Partition Coefficients (Kow) E
7] Lof go to PEP\this compound 2.9 25....... [Easeals )&
[ Lo go to MCI module &3 23 ®
Bl go ta TSA madule ®

go to UNIFAC module
go to Property\Property module

&
@

Figure 2. View of PEP's chemical property database
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MCI-BASED PROPERTY ESTIMATION MODULE

Overview

Upon entering the MCI module the user must first input the necessary structural
information. The user can input the required structural information using cither SMILES
(Simplified Molecular Input Line Entry System) notation or connection tables generated from
two commercially available two-dimensional drawing programs, ChemDraw™ or
ChemlIntosh™. A detailed description of SMILES will be incorporated as a help option in the
near future. After the structural information is entered, MCls are then calculated using an
application external to HyperCard™. The calculation of MCls will be described in detail in a
following section. After the MCIs are calculated, the results are imported back into
HyperCard™ where they can be displayed. Upon importing the MCI the uscr can then choose
which property are to be estimated. Several MCI-property regression models are available for
each property. A view statistics option is available to aid the user in choosing the most
appropriate model. After choosing the most appropriate regression, estimates for the selected
properties can be made. The MCI module results window provides an estimate ol the property
along with its calculated accuracy based on the 95% confidence interval calculated from the
regression. The overall operation of the MCI module is illustrated in Figure 3.
Calculation of MClIs

To calculate the MClIs for a given compound, a delta (d) value must first be assigned to
each atom in the structure. Three main d values were computed in this study: normal, bond,
and valence. Normal deltas were computed by summing the number of bonds (single, double,
etc. are counted as one bond) connected to the atom whose delta is being calculated. The bond
deltas were calculated the same way as the normal deltas except the bonds were taken at their
face value (single is one, double is two, etc.) instead of each bond being equal to one. Valence

deltas for each atom were computed according to equations (2) and (3) (Kicr and Hall, 1986):
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where dV is the valence delta, ZVY is the number of valence electrons in the atom, h is the

number of hydrogen atoms bound to the atom, and Z is the atomic number of the atom.

Equation (1) is used for those atoms in the first row of the periodic chart, and equation (2) is

used for all other atoms. An example delta calculation for phenol is shown in Figure 4.
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Figure 4. Delta values calculated for phenol.
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Once the delta values have been calculated for each atom in the molecule, simple, bond and
valence indices of different orders and types can be calculated for a given molecule. The order
refers to the number of bonds in the skeletal substructure or fragmeat used in computing the
index: zero order defines individual atoms, first order uses individual bond lengths, second
order uses two adjacent bond combinations, and so on. The type refers to the structural
fragment (path, cluster, path/cluster or chain) used in computing the index the MCIs
corresponding to the desired graph fragment types can be calculated. The fragment types are
derived from graph theory and are best described by example, as shown in Figure 5.

C

C—C—C—C c—C’

.

3rd order path C
3rd order cluster

C
. C
C—=C=C, / \
C C C
4th order path-cluster 3rd order chain

Figure 5. Four types of graph fragments.
Only path indices are possible for orders less than 3. The symbol 2x represents a simple
second order index whereas the symbol lx" represents a first order valence index.

Finally, to calculate the MClISs, the following equation is used (Kier, 1980):

1 )

where 8t is the delta of type t determined as above, n is the total possible number of mth order
indices in the molecule, m is the number of bonds over which the deltas are taken, t is the type
of indices (normal, bond, or valence), and g is one of the four graph types (path, cluster, path-

cluster, or chain).
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The MCI calculation routine PEP calculates simple, bond and valence indices of several
types (path, cluster, chain, and path/cluster) and orders (0 through 6), if possible, for cach
molecule, resulting in a maximum of 54 index values for each molecule.

To account for non-dispersive force effects on aqueous solubility and solubility related
properties zero through six order A valence path indices (Ay), as described by Bahnick and
Doucette (1988), are calculated by PEP, in addition to the 54 indices described above. To
calculate Ay indices, a nonpolar equivalent is made by substituting C for O or N atoms. MCls
are calculated for the nonpolar equivalent and values for Ay can be computed for each type of

index by:

Ay = (X)np - X (5)

DEVELOPMENT OF MCI-PROPERTY RELATIONSHIPS

For each property, MCl-property relationships were developed for both general and
specific chemical classes. The database compounds were classified into four general groups:
Non-polar aromatics (compounds having no O or N containing functional groups), polar
aromatic (compounds having O or N containing functional groups), non-polar non-cyclic non-
aromatics, polar non-cyclic non-aromatics and specific chemical classes such as PCBs, PAHs,
carbamates, ureas etc. In addition, "universal" equations were developed which utilized all
database compounds having values for a specific property.

Two approaches were used to choose the most appropriate variable(s) in developing the
MCl-property regression equations. The first approach used a combination of two indices, one
related to molecular size or dispersive intermolecular forces (i.e., vp0, vp1, np0, np1, bp0 and
bpl) and one related to the non-dispersive forces (Ax). The second approach relied entirely on
a stepwise multiple linear regression program to select the most appropriate variable. If the the
two approaches resulted in models of similar fit the equation resulting from the first approach

was used because of its greater conceptual meaning.

18




The MCl-property relationships which have been developed so far are presented in
Appendix A along with the relevant regression statistics. The information obtained in the first
year of the project shows that MCls can be used to predict property values for a varicty of
organic chemical types using both class specific and more general regression equations. The
universal and more general regression models utilize Ay indices. These non-dispensive force
terms are important in predicting physical properties for molecules exhibiting substantial
hydrophilicity. The predicted property values are within the experimental uncertainty in their
measurement for the vast majority of chemicals investigated.

In addition, an improvement in predicted values for some of the compounds in the study
could be realized by adjusting the assigned valance values. This will be further investigated in

the second year of study.

STATISTICAL EVALUATION OF MCI-PROPERTY RELATIONSHIPS

All regression equations used in MCI-property relationships (and in the property/property
correlations discussed in a later section) were evaluated for their statistical significance of
regression variables. Each of these steps were independently performed for each regression
relatdonship that was developed from experimental data.

Examination of Residuals

Residuals, e, are defined mathematically as the difference between the log,, of an

experimentally determined value, Y,, and its predicted value, Y,':
e =log(Y,-Y),i=1, ..n,, (6)

Regression analyses are performed subject to a number of important assumptions relative o
the nature of their residuals (Draper and Smith 1981): 1) they are assumed to be independent
of one another in a data set, 2) they are assumed to have a mean of zero, 3) they are assumed to

have constant variance, and 4) they are assumed to be normally distributed. If the regression
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relationship is a true representation of the experimental data and includes all signiticant
variables, then its residuals should confirm the assumptions made above.

A test of the validity of a developed regression expressica can then be based on an
assessment of the validity of these assumptions regarding its residuals through an examination
of residual plots (residuals versus measured values, residuals versus predicted values, a normal
probability plot of residual values) and calculated statistics.

Plots of residual values versus measured and predicted values will generally take the form
of the relationships shown in Figure 6. Figure 6a indicates residuals that verify the
assumptions made above being independent with constant variance, and normally distributed
about a zero mean. The relationship shown in Figure 6b id'cates either a lack of indenendence
of the residual values, or a regression model that does not adequately represent ob crved data.
i.e., a linear model not adequately representing a . :lationship that has curvature. Figure ¢
indicates non-constant variance, while the residual plot in Figure 6d indicates crror in the
analysis such as the absence of the y-intercept term in a regression model. The assumpution of
normally distributed residuals can also be evaluated from a normal probabihity plot of residual

values. These residuals can be said to be normally distributed if their nonmal probability plot is

£

Figure 6. Examples of residual plots.
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Deviations from the "correct” plot behavior, i.e., Figure 6a, does not automaticall v mean
that there is an error in the regression relationship or in the assumptions of normality, constant
variance, etc., of the residuals. This is particularly true for regression relationships developed
from a smal!l number of experimental observations. Gross deviations from ideal behavior
should be identified, and should be flags for further testing of the validity of assumptions
regarding the data set being analyzed as described by Anscombe and Tukey (1963) and Draper
and Smith (1981).

Analysis of variance

When applied to regression analyses, the analysis of variance (ANOVA) is a test for the
significance of the regression relationship, i.e., are the regression variables a significantly
better descriptor of the behavior of the data than its mean value. An example ANOVA table is
presented in Table 2. In this table, the significance of the regression relationship is indicated
by the F ratio, which represents the ratio of the variance explained by the regression to that

explained by the residuals. The F value for a given relationship is compared to a table of
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critical values for the F distribution for the appropriate number of regression (n) and residual
(n,) degrees of freedom. If the F value for the regression is found to be greater than the critical

F value at a given confidence level, the regression is significant at this confidence level.

Table 2. Sample ANOVA Table

Source dft SS+t MSTHt F ratio a8
Regression 1 6.326 6.326 6.569 <0.01
Residual 22 21.192 0.963 =¢°
Total, corrected SS 23 27.518

degrees of freedom

-+ - =k

T sum of squares
+t mean square = SS/df
§ probability of significance test

Table 2 can be used to calculate the coefficient of determination, r*;
r* = SS/Total, corrected SS )

a value which indicates the proportion of the total variation about the mean regression line that
is described by the regression equation. Table 2 data also allows the calculation of the standard
deviation of the regression, s, which is the square root of the residual mean square. This value
of s can be interpreted as the average residual, or average precision of the predicted value
generated from the regression equation.
nt's t-test for the significance of variabl

The coefficients estimated from the regression relationship are not known exactly, as cach

regression coefficient has a corresponding standard error. The Student's t value is the ratic of

a regression coefficient value to its standard error, and indicates whether the coefficient value is

significantly different from zero, i.e., whether it can be considered for inclusion in the
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regression equation. The t value for a given coefficient is compared to values in a standard t
table for n - 1 degrees of freedom, where n = the number of observations, to determine the
probability level for the hypothesis that the coefficient is not statistically ditferent from zero. [
the probability from the standard t table is less than a specified probability level, 0.05 in this
study, then the variable is identified as significant, and is included in the regression equation.

Precision of the predicted value

As described above, the standard deviation of the regression relationship, s, is a measure of
the average precision of predicted values. However, as indicated by Draper and Smith (1981).
the precision of of the predicted values depends on the values of the independent variables.

These authors indicate that the s value underestimates the uncertainty associated with the

predicted value, and that a better measure of the precision of Y,' at given values of the

independent variable X, is given by the matrix equation:

-1
Y(,=Yo'is\/1+xo‘(X'X) X, (8

where Yo is the predicted value at a given value of X with the precision described as the
product of s times the term under the radical, X is the matrix of independent variable values.
and Xo is the vector of independent variables at which predicted values of Y, are desired. As
the number of observations increases, i.e., nobs > 500, the term under the radical approaches
one, and Equation 7 simplifies to the standard form:

Y0=Yo'i5 (())

Preliminary Results from MCI-Property Relationships

The relationship between estimated and experimental log Kow is illustrated in Figure 7.

The estimated log Kow values were calculated using the universal MCI-log Kow regression
model. A significant improvement is observed when the four general class MCl-log Ko
regression modecls (aromatic polar, aromiatic non-polar, non-aromatic non-polar, and non-

aromatic polar) are used in combination as shown in Figure 8.
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Figure 7. Experimental versus estimated (MCI Universal) log Kow.
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Figure 8. Experimental versus estimated (MCI four general equations) log Kow.
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For comparison, log Kow estimated using the computerized group contribution method
(ClogP) of Leo and Hansch are plotted against experimental log Kow values for the same
compounds used in Figures 7 and 8 (Figure 9). A comparison between properties estimated by
PEP and those estimated by other established methods will be further explored in the project's

second year.

y = 9625x + 2573, r 2 = 8303
10 — : .

[
+

O cst. log Kow (ClogP)

est. log Kow (ClogP)

4 2 0 2 4 6 8
exp. log Kow

Figure 9. Experimental versus estimated (ClogP) log Kow.

UNIFAC MODULE
Overview
As discussed in the background and significance section UNIFAC-derived activity
coefficients have been used to estimate values for aqueous solubility and octanol/water partition
coefficients. However, since the UNIFAC approach is a solution of groups method, its
operation is different than the MCI or property-property modules which are based on

regression analysis.

25




Upon entering the UNIFAC module the user must first choose the property to be estimated.
Currently, the UNIFAC module allows for the estimation of aqueous solubility and
octanol/water partition coefficients. We have also included several additional properties which
are of interest in environmental fate modeling: solubility in water/organic cosolvent systems,
solubility in organic solvents, and oil/water partition coefficients. Only the aqueous solubility
and octanol/water partition coefficient options are currently functional.

Upon entering the UNIFAC module the user must first choose the property to be estimated.
After choosing the property, the required structural information must be input using one of
three methods: manual, connection table (option not currently implemented), or SMILES
string. The manual input method requires the user to dissect the molecule into its appropriate
UNIFAC functional groups. A table of UNIFAC structural groups is provided for this
purpose. If either the SMILES or connection table option is used the molecule is automatically
dissected into its UNIFAC structural groups. Once the groups are selected the activity
coefficent(s) can be calculated. The UNIFAC groups are displayed so that the user can verify

their correctness. Figure 10 illustrates the overall operation of the UNIFAC module.

NIFAC Module

anually Choose
UNIFAC Group
nput p
Choose Property Calculate Calculate
SMILES View
‘(s. Kow. Koc, BCF)I ‘ l::.;"r;:::n Activity  |—aProperty |- Results
Coefficient(s) (S, Kow)
w Structure A
ChemDraw™ g,ye jConnection Display
Chemintosh™ "2 Table Intermediate
‘ Calculation
Results

Figure 10. Flow chart depicting operation of UNIFAC module.
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Calculation of UNIFAC derived activity coefficients

UNIFAC (UNIQUAC Functional Group Activity Coefficient) is a solution of groups
method for calculating activity coefficients which requires only the structure of the compound
as input. The calculated activity coefficients can be then used to estimate aqueous solubility,
octanol/water partition coefficients and related properties such as solubility in organic solvents,
solubility in mixed water organic solvents, and oil/water partition coefficients.

In this technique, UNIFAC calculates activity coefficients by dividing them into two parts,
a combinatorial part which reflects the size and shape of the molecule present and a residual

portion which depends on the functional group interactions:

Iny; =Iny + In R (10)

where 7¥j is the activity coefficient for the ith molecular component in the mixture. The
superscripts refer to the combinatorial (c) and residual parts (R)

Various parameters, such as van der Waals group volumes and surface areas and group
interaction parameters, are input into a series of equations from which the combinatorial and
residual parts are calculated. Values for the group parameters have been tabulated and can be
found in the literature (Fredenslund et al., 1977 and Gmehling, 1982). The group parameters

of Gmehling (1982) are used in the PEP UNIFAC module.

Estimation of aqueous solubility and octanol/water partition coefficients for UNIFAC derived

activity coefficients

UNIFAC derived activity coefficients can be used to calculate aqueous solubility. The

aqueous solubility (S) of an organic liquid can be approximated as follows:

S = 55.5 30ghaq (11)

where 2org i the activity of the liquid in the organic phase and yaq is the activity coefficient in

the aqueous phase. For hydrophobic compounds, 2org approximately one, since water does
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not significantly dissolve in the organic phase. Thus the aqueous solubility of an organic liquid

can be estimated from the following expression:

12

S = 35/(Yag)UNIFAC (12)
where (Ya3g)UNIFAC is the UNIFA C-derived activity coefficient at infinite dilution. For
solids, the solubilities must be corrected to those of the corresponding supercooled liquids

using the following expression (Yalkowski et al.,1980):

log Ssupercooled liquid = 10g Ssolid = 0.01(MP - 25) (13)

where MP is the compound's melting point in °C.
Property/property correlation module

The property property correlation module is not fully implemented as the current time.
Only a limited number of property/property correlations have been developed using the data
collected in this study. A prototype of the module has been developed using property-property
correlations published in the literature along with several general relationships developed in the
first year of this project. The property-property module should be fully implemented with

several months. A flow chart describing the operation of this prototype module is presented in

Figure 11.
LProperty/Property Correlation Module l
Property/Property Choose Most View Results
Choose 5
Correlation — Property —®] Appropriate mp::o:;er?;(:)edr—d graii)ff:: and Estimatc
Module Regression of Accuracy
View
Regression
Statistics

Figure 11. Flow chart depicting operation of UNIFAC module

Upon entering this module the user must first choose the property to be estimated. Once

this is done the program then displays the available regression models along the required input
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properties. At this time the user has the option of viewing the regression model statistics.
Once the user chooses the most appropriate regression model and inputs the required
information, the property can be estimated. The results of the property estimation can then be
displayed along with an estimation of its accuracy based on the statistical approach described in
the MCI section.

A summary of the property-property correlations developed in the first year of study are

presented in Appendix B. It is anticipated that the module will be completed in several months.

SUMMARY OF FIRST YEAR ACCOMPLISHMENTS

Chemical property data were compiled for over 700 compounds from a variety of literature
sources and computerized databases. Only experimentally measured propertics were used.
Using this information, a chemical property database was created and used for developing
MClI-property and property-property relationships which were then incorporated into a
prototype microcomputer based property estimation program, referred to as PEP.

The property estimation program, PEP, is a decision support system, developed using
HyperCard™ software, which utilizes MClI-property, property-property, and UNIFAC
modules to provide the user with several approaches to estimate physical properties . The
current version of PEP provides estimates of the following properties: aqueous solubility,
octanol/water partition coefficients, vapor pressure, Henry's Law constants, organic carbon
based soil sorption coefficients, and bioconcentration factors.

At the time of this report, the three property estimation modules are implemented, the MCI
module is approximately 90% complete while the UNIFAC and property-property modules are

approximately 50% complete.

SECOND YEAR OBJECTIVES
In the original proposal, the major focus of the second year was to port the program

developed on the Macintosh over to an MS-DOS platform. After reviewing the results obtained
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in the first year, the investigators feel that further development and refining of the structural

property relationships and linking PEP to an environmental fate model would be more

important than implementing PEP on a different computer platform. Thus, we propose to
accomplish the following tasks in the second year of the project:

1. Complete UNIFAC and Property-property modules.

2. Refine MCl-property relationships by examining the relationship between MCI and
properties such as total molecular surface area, polarizability, and dipole moment.

3. Continue to develop chemical property database for current compounds and expand
database by adding biotic and abiotic transformation related properties such as
biodegradation, hydrolysis, and photolysis rates.

4. Investigate the relationship between MCI and transformation rates.

5. Link PEP with VIP (Vadose Zone Interactive Processes) to demonstrate the utility of

combining a property estimation program with an environmental fate model.

@)}

. If time permits, attempt to port PEP and associated database over to 2 MS-DOS platform.

MISCELLANEOUS PUBLICATIONS

Frazier, J.D. 1990. Estimation of Chemical/Physical Properties Using Molecular Connectivity
Indices for Application in Modeling the Environmental Fate of Organic Compounds. M.S.,
Utah State University.
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Relationships Utilizing Molecular Connectivity Indices and Total Molecular Surface Areas
for Environmental Fate Modeling. Presented at the International Chemical Congress of
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Frazier, J.D, and W.J. Doucette. 1989. Microcomputer Program Utilizing Molecular
Connectivity Indices for Property Estimation. Presented at the International Chemical
Congress of Pacific Basin Societies, December 21, Honolulu, Hawaii, USA
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Summary Statistics Cards for MCl-property relationships
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Constant (2.0477 [0.3149 (6.5 Regression [|52.8732 |2 26.44 |141

np1 -2.0254(0.1515(-13.4 Residual |6.00701 |32 0.1877

np3 0.9608 |0.1625{5.91 Total 58.88021(34 1.7318
r2=89.8% MNghs= 35 S=0.4333

Predicted vs. EXp. Residual vs. Predicted Residual vs. Prob.
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Regression Results
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Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS df MSS F
Constant [2.9022 [0.074 [39.2 [{> Regression [196.290 |1 196 4240
np1 -1.1561)0.0178|-65.1 [ Residual |3.65699 |79 0.0463
Total 199.9469{80 [2.4993
r2-=98.2% MNgps= 81 $=0.2152
Log S vs. MCI Residual vs. Predicted Residual vs. Prob.
w 09 w 09
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nuniber of standard
predicted deviations

Return to PEP




Summary Statistics Cards for MCl-property relationships

STATISTICS Class: s nolar

Aromatic

R

Regression Results Analysis of Yariance Table
Std.

Yariable Coef. ¢trror t Source RSS df M55 F

Constant {0.2478 [0.2122]1.17 Regression [169.662 |2 84.8 349

vp1 -1.1114{0.0579|-19.2 Residual |[26.9593 |111 ]0.2429

vp6 0.6617 |0.1107|5.98 Total 196.6213|113 |1.74
r2=86.3% Ngps= 114 $=0.4928

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.
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STATISTICS Class: s PCBs

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t Source RSS df MSS F
Constant |-1.8528|0.2204 |-8.41 Regression |6.50320 |1 6.5032 |288
bp6 -6.2017/0.3654 |-17 Residual {0.158026(7 0.0226
Total 6.661226(8 0.8327
r2=97.6% MNgbs= 9 $=0.1503
Loag S vs. MCI Residual vs. Predicted Residual vs. Prob.
A w
o 0 3 o1 {F 3 0.1
g B 7
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Summary Statistics Cards for MCl-property relationships

STATISTICS Class: S ureas

Regression Results Analysis of Yariance Table

Std.
Yariable Coef. Error t Source RSS df MSS F
Constant |3.758 0.4631 (8.12 Regression [32.5444 |1 32.54 177
bp1 -1.0747]0.0808]-13.3 Residual 1.65604 |9 0.184
Total 34.20044(10 3.42
r2=95.2% Ngps= 11 s = 0.4290
Log S vs. MCI Residual vs. Predicted Residual vs. Prob.
%] W
i 04-'» s 04
B ‘ 2
w w
o -0.4 + e -04
=20 00 -1 a 1
nurnber of standard
predicted deviations
SRR SRR 55858

Return to PEP

STATISTICS Class: S Anilines

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS d¢ MSS F
Constant {0.9892 [0.401 [2.47 Regression |45.5658 |1 45.57 195.0
bp1 -.7157 10.0734|-9.75 . Residual 9.10898 |19 0.4794
% Total 54.67478120 2.7337

r2=83.3% Nops= 21 S= 0.6924

Residual vs. Predicted Residual vs. Prob.

Log S vs. MCI
15 w15
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2 05 - _ 8 0S5
b . : . .
m-0.5+_' . Tt & 05+ ...

-1 0 1
numtaer 9ft§tandard

§ data base




Summary Statistics Cards for MCl-property relationships

STATISTICS Class: S Alcohols

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t » Source RSS de  MSS F
Constant 12.8524 |0.0839134 Regression |167.948 |1 168 3248
bp1 -1.1446|0.02011{-57 Residual {3.41245 |66 0.0517
Total 171.3604{67 |2.5576
r2=98.0% MNgps= 68 S= 0.2274
Log S vs. MCI Residual vs. Predicted Residual vs. Prob.
2 o
2 o3 : 3 03 _
e : —
@ -0.34— ! x-03 g
-6 -4 -2 0 -1.25 1.25

nurnber of standard
deviations

SRES GOSN

data base

Return to PEP

STATISTICS Class: S Halogenated benzenes

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t , Source RSS d¢g MSS F
Constant |[-.7166 |0.2099(-3.41 Regression {15.5443 |2 7.772 {102
nc3 -.8638 |[0.3031|-2.85 Residual |[2.21780 |29 0.0765
vpO -.3291 |0.0405(-8.12 Total 17.7621 |31 0.573
r2=875% MNgbs= 32 $=0.2765
Predicted vs. Exp. Residual vs. Predicted Residual v¥s. Prob.
09 . 09
3-3 2 . 8
i 3 03 AR 5 03
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Summary Statistics Cards for MCl-property relationships

STATISTICS Class: s PAHs

Regression Results

SRR

Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS ds MSS F
Constant |-1.135310.2894(-3.92 Regression 130.5352 |1 30.54 [181
np1 -.5011 10.0373]-13.4 Residual 5.74826 |34 0.1691
Total 36.28346|35 1.0367
r2=84.2% Mgps= 36 $=0.4112

Log S vs. MCI
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w
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Residual vs. Predicted

Residuals

Residuals

Residual vs. Prob.

1 i i
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number of standard
deviations

Regression Results

Polar Aromatics

Analysis of Variance Table

Std.
Yariable Coef. Error t
Constant 11.4051 [0.3001 {4.68
vpo -.4987 |0.0396]-12.6
Avp1i 0.5967 [0.2204[2.71

Predicted vs. Exp.

Source RSS d¢ MSS F
Regression |174.537 |2 87.3 97.7
Residual 96.5006 (108 (0.8935

Total 271.0376|110 (2.464
r2=64.4% Ngps= 111 S$= 0.9453

Residual vs. Predicted

Residual vs. Prob.
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Regression Results

Summary Statistics Cards for MCl-property relationships

STATISTICS Class: Pv PCBs

R e
SRR B B X i

Analysis of Variance Table

Predicted vs. Exp.

Residual vs. Predicted

Regression Results

eturn to PEP

Std.
Yariable Coef. Error t Source RSS de MSS F
Constant |9.4791 (1.815 (5.22 Regression (49.8285 |2 24 .91 115
np3 -2.428410.4481}-5.42 Residual 2.60424 |12 0.217
ncs 5.8143 |2.15 2.7 Total 52.43274114 3.7452
r2=95.0% DNops= 15 $=0.4659

Residual vs. Prob.
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Analysis of Variance Table

Log Pv vs. MCI

o

Residual vs. Predicted
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St

Residuals
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Residuals

N

Std.
Yariable Coef. Error t Source RSS d¢ MSS F
Constant |5.2611 [0.1801 Regression |453.996 |1 454 672
np3 -1.2746{0.0491 Residual 162.7848 |93 0.675
Total 516.7808[94 5.4977
r2=87.9% fops= 95 $=0.8216

Residual vs. Prob.
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Summary Statistics Cards for MClI-property relationships

TATISTICS Class: Pv PAHs

R

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t 7 Source RSS d¢g MSS F
Constant [8.7168 |0.4656[18.7 Regression 135.5950 |1 35.6 450
np1 -1.4892|0.0702(-21.2 ] Residual |0.712338]9 0.0791
Total 36.30733{10 3.6307
r2=98.0% MNgps= 11 §=0.2813
Log Py vs. MCI Residual vs. Predicted Residual vs. Prob.
o K]
z 3 02 302
o =] b=
= £ -02 -Iv 202
-45 -15 00 -1 0 1
numbet of standard
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Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t 7 Source RSS de¢g MSS F
Constant [6.622 0.349 Regression [147.169 |1 147 494
bp1 -1.559210.0701 Residual 7.14780 |24 0.2978
Total 154.3168]|25 6.1727
r2=95.4% Ngbs= 26 S= 0.5457
Log Pv vs. MCI Residual vs. Predicted Residual vs. Prob.
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Regression Results

Summary Statistics Cards for MCIl-property relationships

STATISTICS Class: Kow Universal

R S oty

Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS ds MSS F
Constant |1.1527 [0.1411 (8.17 Regression [335.264 |2 168 315
vpO 0.3978 [0.0175122.7 Residual 102.809 {193 ]0.5327
AvpO ~-1.984310.12341-16.1 Total 438.073 |195 2.2465
r2=76.5% MNgps= 196 S$=0.7299

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

T 6 w 125 ‘|> AR v 125 =
- [ . . [
y 2 g -1.25 ) ¢-1.25 .
= o o Rty
o 2 4 6 2 4 6 8 -15 00 15
. . nurmber of standard
Experimental log Kow predicted

STATISTICS Class: Kow ureas

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t 7 Source RSS de MSS F
Constant {-3.9333(0.2288}-17.2 [{> Regression }118.8299 |1 18.83 1504
vpi 1.2594 |0.0561 |22.5 Residual 0.186679|5 0.0373
Total 19.0165746 3.1694
r2=99.0% MNgbs= 7 §=0.1932

Log Kow vs. MCI Residual vs. Predicted Residual vs. Prob.
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Summary Statistics Cards for MCl-property relationships

Regression Results

STATISTICS Class: Kow Pol

ar Aromatics

Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS ds MSS F
Constant ({1.8347 (0.2632[6.97 Regression {39.0336 (2 19.52 |52.9
vp0 0.2869 |0.028 |10.2 Residual 14.7522 |40 0.3688
Avp0 -1.4152]0.2617 |-5.41 Total 53.7858 |42 1.2806
r2=72.6% MNops= 43 $=0.6073

Predicted vs. EXp.

predicted

Experimental log Kow

Residual vs. Predicted

Residuals

0.75 {

o

Residuals

-0

Return to PEP

STATISTICS Class: Kow PCBs

Regression Results

Residual vs. Prob.
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data base

Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS df MSS F
Constant |3.554 0.1888|18.8 Regression }19.80627 |2 4.9031 |[167
bp4 -.9026 |0.2567(-3.52 Residual 0.382424(|13 0.0294
bp6 5.8313 ]0.6189]9.42 Total 10.18869415 0.6792
r2=96.2% DNops= 16 $=0.1715
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Summary Statistics Cards for MCl-property relationships

STATISTICS (Class: Kow PAH's

Regression Results
S5td.
Yariable Coef. Error t Source RSS ds MSS F
Constant 10.7812 10.218 |[3.58 Regression [10.9031 |1 10.90 |395
np0 0.4103 0.0206]19.9 Residual 0.303592]|11 0.0276
Total 11.20669712 0.9339

r2=97.3% Nghs= 13 S=0.1661

Residual vs. Predicted Residual vs. Prob.

Log Kow vs. MCI
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predicted deviations
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Return to PEP

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t 7 Source RSS d¢g MSS F
Constant |1.2033 {0.1598}7.53 Regression [102.413 |1 102 494
vp0 0.4146 |0.0187|22.2 Residual 17.6377 |85 0.2075
Total 120.0507|86 1.3959
r2=85.3% MNgbs= 87 §= 0.4555

Residual vs. Predicted Residual vs. Prob.

Log Kow vs. MCI
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Summary Statistics Cards for MCl-property relationships

STATISTICS Class: Kow noncyclic Oxygenated

Analysis of Variance Table

Regression Results

Std.
Yariable Coef. Error t 7 Source RSS de¢  MSS F
Constant |-1.6181(0.1489|-10.9 Regression 128.7287 |1 28.73 |713
bp1 1.0591 [0.0397}26.7 Residual 0.725310(18 0.0403
Total 29.45401|19 1.5502
r2=97.5% MNops= 20 s= 0.2007
Log Kow vs. MCI Residual vs. Predicted Residual vs. Prob.
> 2
&3 ~§ 0.15
2 £-0.15
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2 z 4 3 6 1 2 3 4 -1 0 1
number of standard
deviations

DRSSO B

g

gﬁ'\. S50

STATISTICS Class: Kow noncyclic nonpolar
Analysis of Variance Table

Regression Results

Std.
Yariable Coef. Error t Source RSS de MSS F
Constant [-.2407 [0.2418}-.995 |[{ Regression |37.0139 |1 37.01 225
bp1 1.2633 |0.0842 |15 Residual 5.26621 |32 0.1646
Total 42.2801 |33 1.2812
r2=87.5% MNobs= 34 S = 0.4057

Residual vs. Predicted Residual vs. Prob.

Log Kow vs. MCI
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Summary Statistics Cards for MCl-property relationships

STATISTICS Class: Kow anilines

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t Source RSS d¢ MSS F
Corstant |-1.31840.2381 |-5.54 Regression | 18.5293 |2 9.265 172
bp1 1.0828 |0.0878 (12.3 Residual |0.646843]|12 0.0539
Avp5 -3.9803/0.6307 {-6.31 Total 19.17614(14 1.3697
r2=96.6% MNgps= 15 §= 0.2322
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.
b4 n o
£ 4 3 0.15 . 3 0.15
® o i
L2 2 -0.15 = & -0.15
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Return to PEP { data bas

STATISTICS Class: Kow Alcohols

Regression Results Analysis of Yariance Table
] Std.
Yariable Coef. Error t , Source RSS d¢ MSS F
Constant |-1.9613(0.1281[-15.3 Regression {5.03456 |1 5.0346 |1085
bp1 1.1665 [0.0354(32.9 Residual {0.013924(3 0.0046
Total 5.048484(4 1.2621
r2=99.7% Ngps= 5 S=0.0681
Log Kow vs. MCI Residual vs. Predicted Residual vs. Prob.
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Summary Statistics Cards for MCl-property relationships

TATISTICS Class: Koc Universal

Regression Results Analysis of Yariance Table
Std.
Yariable Coef. Error t Source RSS de MSS F
Constant |0.6111 |0.1767 (3.46 Regression |[159.141 |2 79.6 138
np1 0.4647 |0.0289 |16.1 Residual 96.6154 |168 [0.5751
Avp0 -1.224310.1176|-10.4 Total 255.7564)170 |[1.5044 B
r2=62.2% Mobs = 171 S$=0.7583
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.
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STATISTICS Class: Koc Ureas 2

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error 1 7 Source RSS de MSS F
Constant |-.4476 |0.4502|-.994 Regression | 7.64836 |2 3.8242 (24.8
Avp1 -.0235 |0.4433|-.053 Residual [2.92537 (19 0.154
np0 0.2568 |0.038516.68 Total 10.57373|21 0.5035
r2=73.2% MNgps= 22 s = 0.3924
Predicted vs. Exp. Residual vs. Predicted Residual vs. Pruu.
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Summary Statistics Cards for MCl-property relationships

STATISTICS C(Class: Koc Ureas

Regression Results

AR SRR

Analysis of Variance Table

Std.
Yariable Coef. FError t Source RSS df MSS F
Constant 10.8342 10.1578]5.29 Regression 19.29029 |2 4.6451 |68.8
np6 1.6588 |0.148 [11.2 Residuai 1.28344 (19 0.0675
nché -6.255611.515 |-4.13 Total 10.5737 j21 0.5035
r2=87.9% Ngps= 22 $=0.2599

Predicted vs. Exp.
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Regression Results

Analysis of Yariance Table

Std.
Yariable Coef. Error t Source RSS de MSS F
Constant |-.5643 |0.7221 [-.781 Regression |1.60125 |2 0.80062|32.6
bp1 0.6296 |0.0919}6.85 Residual 0.2213181(9 0.0246
Avp0 -.9382 10.3763|-2.49 Total 1.8226 11 0.1657
r2=87.9% MNgps= 12 $=0.1568
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Summary Statistics Cards for MCl-property relationships

STATISTICS Class: Koc Polar, non-aromatic, non-cycilic

R

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t 7 Source RSS df¢  MSS F
Constant (0.0615 [0.23 0.267 Regression {10.3570 |2 5.178 (80.2
np0 0.2486 [0.0234|10.6 Residual 0.516495]8 0.0646
Avp1 0.3348 |0.0762[4.39 Total 10.87349410 1.0873
r2=95.2% fgps= 11 §= 0.2541
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.
- - ) »
s 3 : 302 . e 302 .
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Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error Source RSS d¢ MSS F
Constant [0.0018 |1.252 Regression [1.84147 |1 1.8415 (17.8
nc3 3.3677 |0.799 Residual [0.518298]5 0.1037
Total 2.359768]|6 0.3933
r2=78.0% Ngps= 7 $=0.3220
Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.
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Summary Statistics Cards for MCl-property relationships

STATISTICS Class: Koc PAHs
B AT A

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t 7 Source RSS df MSS F
Constant [0.2187 {0.322 [0.679 [} Regression {24.1463 |1 24.15 1196
np1 0.5672 |0.0405]14 Residual 1.60011 13 0.1231
Total 25.74641|14 1.839
r2=93.8% Mobs= 15 $=0.3508
Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.
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number of standard
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data base

SRR

Regression Results
Std.
Yariable Coef. Error Source RSS d¢ MSS F
Constant |0.3614 |0.3952 Regression |0.815111 1 0.8151 [14.6
bp0 0.3604 |0.0944 Residual 0.559114|10 0.0559
Total 1.374225]1 1 0.1249

r2=59.3% Ngps= 12 S=0.2365

Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.
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Regression Results

Summary Statistics Cards for MCIl-property relationships

STATISTICS Class: Koc non-polar, Aromatics

R R s,

Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS ds MSS F
Constant {0.3889 (0.177712.19 Regression [60.5243 |2 30.26 [240
np1 0.5983 |0.0273|21.9 Residual 4.54683 |36 0.1263
bch6é -3.465910.484 |-7.16 Total 65.07113|38 1.7124
r2=93.0% Mgps= 39 §= 0.3554

Predicted vs. EXp. Residual vs. Predicted Residual vs. Prob.
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STATISTICS Class: Koc Halogenated Aromatics

R R s

Regression Results Analysis of Variance Table

Std.
¥Yariable Coef. Error t - Source RSS d¢ MSS F
Constant |-.2045 |0.5708-.358 [{>» Regression |2.03980 |1 2.0398 |31.6
npi 0.7411 ]0.1318|5.62 Residual 0.51584118 0.0645
Total 2.555641(9 0.284
r2=79.8% MNgbs= 10 §=0.2539

Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.

39

log Koc
o
N

Residuals
o
N
a
—tt—
Residuals
o
N
n

35 40 45 50 55 24 28 32 36 12 16 20

number of standard
deviations

4

npl predicted




Summary Statistics Cards for MCl-property relationships

STATISTICS Class: Koc Carbamates

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t Source RSS d¢ MSS F
Constant [0.1814 [0.3295(0.551 Regression [2.63502 |1 2.635 |48.4
vp0 0.2523 |0.0363 |6.96 Residual |0.598675(11 0.0544
Total 3.233695(|12 0.2695
r2=81.5% MNgps= 13 $= 0.2333
Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.
] 0.4
o A ‘l‘ A2 -
2 28 300 — — 3 oo -
20 ®_04 % 04 +.
20 24 28 32 -0.75 -0.25
number of standard

predicted deviationsz

STATISTICS Class: Koc Anilines

Regression Results Analysis of Variance Table
Std.

Yariable Coef. Error t Source RSS d¢ MSS F
Constant [0.1424 [0.3346[0.425 Regression {9.94209 |2 4.971 [45.6
np1 0.5734 |0.0776]7.39 Residual |0.763154|7 0.109

AvpO -1.2366(0.3295|-3.75 Total 10.7052449 1.1895

r2=92.9% MNgps= 10 $=0.3302

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.
° n ) K
5 3 025 . 3 025

§ E hd . = E J'.

5 &-025-[-' . &-025% .

225 3.75 225 375 -00 08 1.2

Experimental log Koc i num%ir;?aftfggg dard
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Sdmmary Statistics Cards for MClI-property relationships

STATISTICS Class: Koc Acetanilide

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS de MSS F
Constant }0.3745 {0.3781|0.99 Regression |1.58075 |2 0.7904 (11.8
Avp1 -1.2323(0.5152(-2.39 . Residual 0.403537|6 0.0673
npt 0.3512 |0.0742 }|4.74 Total 1.984287|8 0.248
r2=79.7% MNgbs= 9 §= 0.2593

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

04 -

° Wy w

e 24 = ]: . =

2 3-00 4+— . _g 0.2

I 2 -8

5 186 M—OA ® -02 -

16 20 24 28 16 20 24 -1.50 -1.00 -0.c
. number of standard
Experimental log Koc predicted deviations

STATISTICS Class: H Universal

Analysis of Variance Table

Regression Results

Predicted vs. Exp.

Residual vs. Predicted

Std.
Yariable Coef. Error Source RSS d¢ MSS F
Constant [0.0003 [0.2096 j0.001 Regression 193.9802 |2 46.99 74.7
np1 -.2496 |0.0422|-5.91 Residual 45,9296 |73 0.6292
Avp1 -1.667 {0.2082(-8.01 Total 139.9098(75 1.8655
r2=67.2% MNohs= 76 §=0.7932

Residual vs. Prob.

2 § 1.25 + e § 1.25 y
2 . o LYk -
E % . - NN % ’_’/""—/
a_ o _1 .25 ) (e o -' -25
-6 -4 -2 0 -6.0 -3.0 -1.25 1.25
number of standard

Experimental TogH

deviations




Summary Statistics Cards for MCi-property relationships

STATISTICS Class: H nonpolar Aromatics

Regression Results

Analysis of Variance Table

Std.
Yariable Coef. Error t - Source RSS de MSS F
Constant [-.9387 [0.1182]-7.94 |{ Regression |[17.3912 |3 5.797 |79.7
np6 -1.56775[0.1463 |-10.8 Residual 2.47279 (34 0.0727
bp4 1.5632 [0.209 |7.48 Total 19.86399|37 0.5369
vp3 -.3061 |0.1107|-2.76 2
r<=87.6% Ngbs= 38 §= 0.2697

Predicted vs. Exp.

Residual vs. Predicted

p— I 4 1] 1 1

-225 -0.75 -25 ~-15

Experimental logH predicted

Regression Results

T w 075 w 075
-~ o4 d
£-15 2 025 1. 3 025
@ w wn
L -25 & 025 -|- &-025

Residual vs. Prob.

i } 1

L ¥ L)

1.25

nurnber of standard
deviations

-1.25

Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS de MSS F
Constant {0.7325 |0.2612]2.8 Regression {6.39442 |2 3.1972 |33.9
vp1 -1.2237|0.1559|-7.85 B Residual {1.60216 |17 0.0942
np2 0.6848 |0.0961(7.13 Total 7.99658 (19 0.4209
r2=80.0% MNghs= 20 S$=0.3070
Predicted vs. EXp. Residual vs. Predicted Residual vs. Prob.
06 ) 06
% 0.00000 - :l: . -
s . 3 00 3 0o
° 1 . . R4
w
£ 0.00000 &-o.s:I: & 06
-150 0.00 -15 -05 05 -1 0 1
number of standard
deviations

Experimental TogH

Return to

| data base




Regression Results

Summary Statistics Cards for MCl-property relationships

STATISTICS Class: HPCBs

Analysis of Yariance Table

Std.
Yariable Coef. Error t Source RSS df MSS F
Constant |-2.477 10.099 |-25 Regression |3.26115 |2 1.6306 |111
npc6 0.3676 [0.0247114.9 Residual 0.175504|12 0.0146
vpcéd -1.1555({0.0895(|-12.9 Total 3.436654(14 0.2455
r2=94.9% MNeps= 15 §=0.1209

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

3 2 0.4 + s 0.1
b 3 3
° W _ ’ T _
ey o-0.1 o-01
a o o
-24 -16 -24 -16 -1 0 1
. nurnber of standard
Experimental logH predicted deviations

Regression Results

Analysis of Variance Table

Std.
Yariable Coef. Error Source RSS d¢ MSS F
Constant ]0.8541 |0.2958 Regression 10.687162|1 0.6872 j110
np1 -.5197 |0.0495 Residual 0.024924|4 0.0062
Total 0.712086]5 0.1424
r2=96.5% Ngpbs= 6 $=0.0789
Log H vs. MCI Residual vs. Predicted Residual vs. Prob.
2 2
x -2.1 3 005 3 0.0S
o 2 2
2 50 & -0.05 + : £ -005

L '}
L] L L L
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S0 55 60 65 7.0 =27 2.1

predicted

npi

Return to P

~0.75 0.75

number of standard
deviations




STATISTI

Regression Results

Summary Statistics Cards for MCl-property relationships

CS Class: BCF Universal

Analysis of variance Table

Std.
Yariable Coef. Error t
Constant [0.9816 ][0.2329 |4.21
npi 0.4347 10.04151({10.5
AvpO -1.999910.2886 |-6.93

Predicted vs. EXp.

predicted

Residual vs. Predicted

-
i

Residuals

1 2

3 4

Experimental log BCF

Regression Results

1.50

BCF PCBs

Source RSS ds MSS F
Regression [60.1143 |2 30.06 [61.6
Residual 32.7178 |67 0.4883

Total 92.8321 |69 1.3454
r2=64.8% Ngpbs= 70 $=0.6988

Residual vs. Prob.

1.50
M .-f'/’ """"
LA
2 0.00 o
i e
@
®.1.50
5 -125 1.25

number of standard

deviations

Analysis of Variance Table

Std.
Yariable Coef. Error t
Constant 17.5756 |0.6252|12.1
nché -21.162(4.009 {-5.28

Log BCF vs. MCI

log BCF
FN
u
o

hy
Q
o

Residual vs. Predicted

Residuals

0.1425 0.1575

nché

Source RSS de MSS F
Regression |0.641375]1 0.6414 |27.9
Residual 0.138126(6 0.023

Total 0.7795011}7 0.1114
r2=82.3% MNops= 8 S$=0.1517
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e
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Summary Statistics Cards for MCIl-property relationships

STATISTICS Class: BCF Polar Aromatics

2 A A A LR A
R e B

A R

Regression Results Analysis of Yariance Table
Std.
Yariable Coef. Error t Source RSS ds MSS F
Constant |1.8367 [0.5026 |3.65 Regression [4.68185 |2 2.3409 [11.5
AvpO -1.373910.4012}-3.42 Residual |2.65010 |13 0.2039
vpo 0.1889 |0.0489 (3.87 Total 7.33195 |15 0.4888
r2=63.9% Nghs= 16 S= 0.4515
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.
® 2 04 } 204
2 3 ~ 2
T @ &
S &-04 &-04
225 3.00 375 20 25 30 35 -1 0 1
Experimental log BCF predicted num‘fditz?:tfggg dard

Regression Results Analysis of Yariance Table
Std.
Yariable Coef. Error Source RSS df MSS F
Constant 1-1.72160.3819 Regression |8.51622 |1 8.5162 |79.8
np0 0.632 |0.0707 Residual [0.853741]8 0.1067
Total 9.369961(9 1.0411
r2=90.9% MNepbs= 10 S= 0.3267
Log BCF vs. MCI Residual vs. Predicted Residual vs. Prob.
o 3 U] | =
2 ® 0.00 1- 2 0.00
o b= : B
2 4 b
&-0.50 i «-0.50
3.75 6.25 0.75 2.25 -1 0 1
number of standard

deviations

............... RARE:

| data base




APPENDIX B




STATISTICS (1ass:s universal from Koc_

Regression Results Analysis of Yariance Table
Std.
Yariable Coef. Error t Source RSS df MSS P
Constant 0.321341 [0.2966 {1.08 {¥| |Regression |152.404 |1 152 194 1
log Koc -1.27402 {0.0915 |-13.9 D Residual |{51.8595 |66 0.78575
r2=74.6% Nobs = 68 §= 0.88¢4

Results in units of mol/L
Log S vs. Log Koc Residual vs. Predicted Residual vs. Prob.

]L e 0.00 T

oo 0.00
wo=I 0 o o} -
= o m
Z m o
— - o =)
~&.00 -~ -2, w =250
BN € &
& .
T

RRRRESPRAREROSIREES :-

oo |

STAT|ST|CS Class:s universal from Kow

Regression Results Analysis of Variance Table
_ Std.
¥Yariable Coef. Error t Source RSS de MSS F
Constant 0.72302 [0.1511 |4.85 {#| |Regression [442.425 |1 442 852 |
log Kow -1.1348 |0.0388 |-29.2 D Residual 89.6957 [173 |0.518472 }
i
Results in units of mol/L r2=s3a% Mobs = 175 §= 0720
Log S vs. Log Kow Residual vs. Predicted Residual vs. Prob.
2.3 Z0 20
0.0 4+ : 15 15
w » . -~
e e, N % 00 % 00 —
3 T ; 3 2 e
R . A O -
50 Q“’m,‘\ 15 2-15
e & 3
o . ———t—t —+ -
15 30 45 &0 60 -30 e oREs
Tog Kow predicted number of standard deviaton:

Delete




SfATISTlCS CIaSS S All eq 2-15 tb 23 from Kow

RSO ERRISR S50
Regression Results Analgsis of Yariance Table
Std.

Yariable Coef. Error t Source RSS ds MSS F
Constant 0.978 {> 1
Log Kow -1.339 D

<
r2= gr.4 Nobs = 156 s=

Results in units of mol/L
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

data base

Regression Results Analysis of Variance Table
Std.
Yariable Coef. Error t Source RSS df MSS F
Constant 129 >
Log Kow -2.38 E]
r2= 5.6 Nobs = 11 S=

Results in units of umol/L
Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

Delete




STATlSTlCS Class S Halobenzenes from Kow & Mp

Regression Results Analysis of Variance Table
Std.

Yariable  Coef. Error t Source R3S d¢ MSS r
Constant 0.717a {r

Log Kow -0.9874

Mp -0.0035 Q

A% 2
Results in units of mol/L r<= 880 Mobs = 35 S =

Predicted vs. EXp. Residual vs. Predicted Residual vs. Prob.

: data base

Regression Results Analysis of Variance Table
Std.

Yariable Coef. Error t Source RSS d¢ MSS F
constant -0.012 >

Log Kow -0.88

Mp -0.01 _D....

0 2
Results in units of mol/l r<= 97.9 Nobs = 32 S=

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.




STAT'STICS Class:Kow Universal from S

IR0 o m SOOI AN PRI
Regression Results Analysis of Variance Table
) Std.
¥ariable Coef. Error t Source RSS ds MSS F
Constant 1.14555 ]0.0955 [12.0 4{#| |Regression |285.65 1 286 853
log S (mol/L)|-0.72252 {0.0251 |-29.2 D Residual |[57.9116 173 |0.33475
<
r2=83.1% Nobs = 175 §= 05786

Results in units of
Log Kow vs. Log S Residual vs. Predicted Residual vs. Prob.
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.
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w

-
-
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Fezidusls

1.25J{ R 1.25
0.00 TRV L 0.00 L

-1.2s+ R -125

]ul] |' 0
—- ]
o
Residual

—_ s i 3 t + +

T L T T

0 2 4 < -15% 00 1.5
predicted nurnber of standard devistons:

STATISTICS Class:koc Pesticides eq 4-5 from S

DT SRS ;
Regression Results Analysis of Variance Table
Std.

Yariable Coef. Error t Source RSS d¢ MSS F
Constant 264 {

logSmg\L  [-055 D

o 2

Results in units of re= 71% Nobs = 106 S=

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.




STATlSTlS C]QSS Koc Umversal from S

Regression Results Analysis of Yariance Table

Std.
Yariable Coef. Error t Source RS5S ds MSS F
Constant 0355372 |0.1653 [5.78 L Regression | 70.0563 1 70.06 194
log S (mol/L)|-0.58564 |0.0421 |-13.9 D Residual 23.8385 |66 0.36119
! <
r2=746% Nobs = 68 S= 0601

Results in units of

Log Koc vs. Log S

Residual vs. Predicted Residual vs. Prob.

—

-~
w L M R w O
o e i ’ ™
e < : > ao-1 21
-t\.&',_\,_‘_‘ 2 2
Il .'];'_’7 1 -2
I ) w2 2
i i 1 i -1 } } I lL % {
T T T 1 T T T T
-&0 -3 0 ~ z 4 < -1.25 Q00 129
corr.log S predicted numbet of standard dewviation:

data base

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS ds MSS F
Constant 1377 s
log Kow 544 D
<
r2= 74 Nobs = 45 S =

Results in units of

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.




STATlSTlCS Class: BCF Umversalfrom .Kow

S R e S

Regression Results

Analysis of Variance Table

Std.

¥Yariable Coef. Error t Source RSS d¢ ™SS f
Constant -0.58027 (0.1978 |-2.93  ({}| [Regression {46.9153 |1 46.92 331
log Kow 0.280366 |0.0484 |18.2 [: Residual 6.51802 |46 0.14170

<
r2= 87.8% nobs = 48 §= 03764

Results in units of

Log BCF vs. Log Kow

Residual vs. Predicted

Residual vs. Prob.

" 05 T 05
. / 00 00
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———— +———t—
250 379 500 1 P 3 4
log Kow predicted nurber of =13

Regression Results

[ L.

Analysis of Variance Table

Std.

Yariable Coef. Error t Source RSS de MSS F
Constant -0.81607 |0.3946 |-2.07 |{» |Regression |28.7887 |1 28.79 89.3
log Koc 124095 [0.1313 {9.45 D Residual |9.02727 |28 0.32240

AV 2
Results in units of re=761% Nobs = 30 S= 05678
Log BCF vs. Log Koc Residual vs. Predicted Residual vs. Prob.
05 05
“ 2 ﬂ 00 . 00
@ 2-05 5-05

= = b=
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IS

Subgroup name,

CH3,15.035
CH2,14.027
CH,13.019
C,12.011
CH2=CH,27.046
CH=CH,26.038
CH2=C,26.038
CH=C,25.03
C=C,24.022
ACH,13.019
AC,12.011
ACCH3,27.046
ACCH2,26.038
ACCH,25.03
OH,17.0073
CH30H,32.0423
H20,18.0152
ACOH,29.0183
CH3C0.,43.0454
CH2C0,42.0375

=

M.W.

CHO,25.03
CH3C00,59.0448
CH2C00,58.0369
HCO0O0,41.0294
CH30,31.0344
CH20,30.0265
CH-0,29.0186
FCH20,49.0249
CH3NH2,31.0575
CH2NH2,30.0495
CHNH2,29.0415
CH3NH,30.0496
CH2NH,23.0416
CHNH,28.0336
CH3N,29.0417
CH2N,28.0337
ACNH2,28.0337
C5H5N,79.1012
C5H4N,78.0933
C5H3N,77.0854

| ———

CH3CN,41.0527
CH2CN,40.0447
COOH,45.0167
HCOOH, 46.0246
CH2Cl1,49.48
CHCI,48.472
CCl,47.464
CH2Cl12,84.933
CHCI2,83.925
CCl2,82.917
CHCI3,119.378
CCi3,118.37
CCl4,153.823
ACCl,47.464
CH3NO2,61.0405
CH2N02,60.0325
CHNO2,59.0245
ACNC2,58.0165
CS2,76.131
CH3SH,48.1029

Yolume
& Area

i lf'

CH2SH,47.0949
Furfural 96.08
{CH20H)2,62.0686
1,126 9045
Br.79.904
CH=C.25.0299
C=C.24.022
DMSQO,78.13
ACRY 53.06
Cl-(C=C).59.475
ACF,31.0094
DMF-1,

DMEF-2,
CF3,69.0062
CF2,50.0078
CF.31.0094

(" import

)

Export

)




